14 research outputs found

    Distributional property testing in a quantum world

    Get PDF
    A fundamental problem in statistics and learning theory is to test properties of distributions. We show that quantum computers can solve such problems with significant speed-ups. In particular, we give fast quantum algorithms for testing closeness between unknown distributions, testing independence between two distributions, and estimating the Shannon / von Neumann entropy of distributions. The distributions can be either classical or quantum, however our quantum algorithms require coherent quantum access to a process preparing the samples. Our results build on the recent technique of quantum singular value transformation, combined with more standard tricks such as divide-and-conquer. The presented approach is a natural fit for distributional property testing both in the classical and the quantum case, demonstrating the first speed-ups for testing properties of density operators that can be accessed coherently rather than only via sampling; for classical distributions our algorithms significantly improve the precision dependence of some earlier results

    On preparing ground states of gapped Hamiltonians: An efficient Quantum Lovász Local Lemma

    Get PDF
    A frustration-free local Hamiltonian has the property that its ground state minimises the energy of all local terms simultaneously. In general, even deciding whether a Hamiltonian is frustration-free is a hard task, as it is closely related to the QMA1-complete quantum satisfiability problem (QSAT) -- the quantum analogue of SAT, which is the archetypal NP-complete problem in classical computer science. This connection shows that the frustration-free property is not only relevant to physics but also to computer science. The Quantum Lovász Local Lemma (QLLL) provides a sufficient condition for frustration-freeness. A natural question is whether there is an efficient way to prepare a frustration-free state under the conditions of the QLLL. Previous results showed that the answer is positive if all local terms commute. In this work we improve on the previous constructive results by designing an algorithm that works efficiently for non-commuting terms as well, assuming that the system is "uniformly" gapped, by which we mean that the system and all its subsystems have an inverse polynomial energy gap. Also, ou

    Distributional property testing in a quantum world

    Get PDF
    A fundamental problem in statistics and learning theory is to test properties of distributions. We show that quantum computers can solve such problems with significant speed-ups. We also introduce a novel access model for quantum distributions, enabling the coherent preparation of quantum samples, and propose a general framework that can naturally handle both classical and quantum distributions in a unified manner. Our framework generalizes and improves previous quantum algorithms for testing closeness between unknown distributions, testing independence between two distributions, and estimating the Shannon/von Neumann entropy of distributions. For classical distributions our algorithms significantly improve the precision dependence of some earlier results. We also show that in our framework procedures for classical distributions can be directly lifted to the more general case of quantum distributions, and thus obtain the first speed-ups for testing properties of density operators that can be accessed coherently rather than only via sampling

    Improvements in Quantum SDP-Solving with Applications

    Get PDF
    Following the first paper on quantum algorithms for SDP-solving by Brandão and Svore [Brandão and Svore, 2017] in 2016, rapid developments have been made on quantum optimization algorithms. In this paper we improve and generalize all prior quantum algorithms for SDP-solving and give a simpler and unified framework. We take a new perspective on quantum SDP-solvers and introduce several new techniques. One of these is the quantum operator input model, which generalizes the different input models used in previous work, and essentially any other reasonable input model. This new model assumes that the input matrices are embedded in a block of a unitary operator. In this model we give a O~((sqrt{m}+sqrt{n}gamma)alpha gamma^4) algorithm, where n is the size of the matrices, m is the number of constraints, gamma is the reciprocal of the scale-invariant relative precision parameter, and alpha is a normalization factor of the input matrices. In particular for the standard sparse-matrix access, the above result gives a quantum algorithm where alpha=s. We also improve on recent results of Brandão et al. [Fernando G. S. L. Brandão et al., 2018], who consider the special case w

    A Unified Framework of Quantum Walk Search

    Get PDF
    The main results on quantum walk search are scattered over different, incomparable frameworks, most notably the hitting time framework, originally by Szegedy, the electric network framework by Belovs, and the MNRS framework by Magniez, Nayak, Roland and Santha. As a result, a number of pieces are currently missing. For instance, the electric network framework allows quantum walks to start from an arbitrary initial state, but it only detects marked elements. In recent work by Ambainis et al., this problem was resolved for the more restricted hitting time framework, in which quantum walks must start from the stationary distribution. We present a new quantum walk search framework that unifies and strengthens these frameworks. This leads to a number of new results. For instance, the new framework not only detects, but finds marked elements in the electric network setting. The new framework also allows one to interpolate between the hitting time framework, which minimizes the number of walk steps, and the MNRS framework, which minimizes the number of times elements are checked for being marked. This allows for a more natural tradeoff between resources. Whereas the original frameworks only rely on quantum walks and phase estimation, our new algorithm makes use of a technique called quantum fast-forwarding, similar to the recent results by Ambainis et al. As a final result we show how in certain cases we can simplify this more involved algorithm to merely applying the quantum walk operator some number of times. This answers an open question of Ambainis et al

    Quantum-inspired low-rank stochastic regression with logarithmic dependence on the dimension

    Get PDF
    We construct an efficient classical analogue of the quantum matrix inversion algorithm [HHL09] for low-rank matrices. Inspired by recent work of Tang [Tan18a], assuming length-square sampling access to input data, we implement the pseudo-inverse of a low-rank matrix and sample from the solution to the problem Ax = b using fast sampling techniques. We implement th

    Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics

    Get PDF
    Quantum computing is powerful because unitary operators describing the time-evolution of a quantum system have exponential size in terms of the number of qubits present in the system. We develop a new "Singular value transformation" algorithm capable of harnessing this exponential ad

    A unified framework of quantum walk search

    Get PDF
    Many quantum algorithms critically rely on quantum walk search, or the use of quantum walks to speed up search problems on graphs. However, the main results on quantum walk search are scattered over different, incomparable frameworks, such as the hitting time framework, the MNRS framework, and the electric network framework. As a consequence, a number of pieces are currently missing. For example, recent work by Ambainis et al. (STOC’20) shows how quantum walks starting from the stationary distribution can always find elements quadratically faster. In contrast, the electric network framework allows quantum walks to start from an arbitrary initial state, but it only detects marked elements. We present a new quantum walk search framework that unifies and strengthens these frameworks, leading to a number of new results. For example, the new framework effectively finds marked elements in the electric network setting. The new framework also allows to interpolate between the hitting time framework, minimizing the number of walk steps, and the MNRS framework, minimizing the number of times elements are checked for being marked. This allows for a more natural tradeoff between resources. In addition to quantum walks and phase estimation, our new algorithm makes use of quantum fast-forwarding, similar to the recent results by Ambainis et al. This perspective also enables us to derive more general complexity bounds on the quantum walk algorithms, e.g., based on Monte Carlo type bounds of the corresponding classical walk. As a final result, we show how in certain cases we can avoid the use of phase estimation and quantum fast-forwarding, answering an open question of Ambainis et al.</p

    Quantum singular value transformation and beyond: Exponential improvements for quantum matrix arithmetics

    Get PDF
    An n-qubit quantum circuit performs a unitary operation on an exponentially large, 2n-dimensional, Hilbert space, which is a major source of quantum speed-ups. We develop a new “Quantum singular value transformation” algorithm that can directly harness the advantages of exponential dimensionality by applying polynomial transformations to the singular values of a block of a unitary operator. The transformations are realized by quantum circuits with a very simple structure – typically using only a constant number of ancilla qubits – leading to optimal algorithms with appealing constant factors. We show that our framework allows describing many quantum algorithms on a high level, and enables remarkably concise proofs for many prominent quantum algorithms, ranging from optimal Hamiltonian simulation to various quantum machine learning applications. We also devise a new singular vector transformation algorithm, describe how to exponentially improve the complexity of implementing fractional queries to unitaries with a gapped spectrum, and show how to efficiently implement principal component regression. Finally, we also prove a quantum lower bound on spectral transformations
    corecore